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� We model potential second-life use
of retired PEV batteries for stationary
storage.

� Second-life batteries in California
may deliver ~15 TWh per year in
2050.

� Enabled renewable electricity gener-
ation may displace ~7 Mt CO2e per
year in 2050.

� There is significant uncertainty in
PEV adoption and battery degrada-
tion scenarios.

� We calculate ESOI and discuss
appropriate metrics for large-scale
storage systems.
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a b s t r a c t

As the use of plug-in electric vehicles (PEVs) further increases in the coming decades, a growing stream
of batteries will reach the end of their service lives. Here we study the potential of those batteries to be
used in second-life applications to enable the expansion of intermittent renewable electricity supply in
California through the year 2050. We develop and apply a parametric life-cycle system model integrating
battery supply, degradation, logistics, and second-life use. We calculate and compare several metrics of
second-life system performance, including cumulative electricity delivered, energy balance, greenhouse
gas (GHG) balance, and energy stored on invested. We find that second-life use of retired PEV batteries
may play a modest, though not insignificant, role in California's future energy system. The electricity
delivered by second-life batteries in 2050 under base-case modeling conditions is 15 TWh per year, about
5% of total current and projected electricity use in California. If used instead of natural gas-fired elec-
tricity generation, this electricity would reduce GHG emissions by about 7 million metric tons of CO2e per
year in 2050.

Published by Elsevier B.V.
1. Introduction

The usage of plug-in electric vehicles (PEVs) is increasing
rapidly, driven by concerns about environmental quality and en-
ergy security. PEV sales in the United States (US) increased by a
factor of over 5 between 2011 and 2013, from 18,000 to 100,000
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Fig. 1. Schematic diagram of analytical framework integrating battery system
modeling with broader energy system modeling. Electricity storage in second-life PEV
batteries enables dispatchable output of intermittent renewable electricity, thus
avoiding fossil electricity generation. Scenario modeling of PEV adoption and battery
degradation defines the scale of the operation.
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vehicles per year [1]. One report projected that PEVs will comprise
30% of US light-duty vehicle sales by 2030, and 80% by 2050 [2]. The
state of California leads PEV sales in the US, accounting for almost
one-third of total US PEV sales [3]. As these vehicles age, a growing
number of PEV batteries will reach the end of their service lives. If
the current California vehicle fleet were fully electrified, it would
entail a post-use battery flow of about 900,000metric tons per year
[4]. Recycling is typically considered as the default end-of-life
management for PEV batteries. However, these batteries may
retain as much as 70e80% of their original storage capacity at the
point of retirement. Stationary energy storage applications, where
storage capacity and power per unit mass are less critical con-
straints, offer a potentially attractive option for extending PEV
batteries' useful life [5]. Referred to as second-life, using post-
consumer PEV batteries as grid-connected stationary energy stor-
age comes with economic, energetic, and environmental tradeoffs.
Quantitatively assessing these tradeoffs and the relative scale of
second-life batteries' contribution to overall energy storage goals
may inform future research and policy decisions.

Previous research has explored various aspects of second-life
PEV battery use, with a focus on economic viability. In a pioneer-
ing study, Cready et al. [6] considered the techno-economic po-
tential of using retired PEV batteries for a range of second-life
applications, identifying 4 promising candidates: transmission
support, light commercial load following, residential load
following, and distributed node telecommunications backup po-
wer. They observed that major uncertainties exist regarding the
performance and life span of used PEV batteries. Narula et al. [7]
conducted an economic analysis of PEV batteries used for various
second-life applications, assuming a fixed (either 5- or 10-year)
service life. They found marginal economic benefits for single-use
applications, although results improved with multiple simulta-
neous applications, e.g. area regulation, transmission and distri-
bution upgrade deferral, and energy time shifting. Neubauer &
Pesaran [8] assessed the economic impact that second-life batteries
use may have on initial PEV costs. They found the upfront cost re-
ductions to be relatively minor, and strongly dependent on the
battery degradation profile and specific second-life application.
Williams & Lipman [9] analyzed the potential economic impacts of
second-life battery use, finding modest but positive economic
benefits of second-life battery use. Benefits depended largely on
whether multiple services could be obtained from the batteries,
and on costs associated with power-conditioning equipment.
Neubauer et al. [10] estimated the selling price of re-purposed PEV
batteries, and found them to be cost-competitive with established
lead-acid battery technology. Ambrose et al. [11] considered the
potential for retired PEV batteries to provide electricity storage for
rural micro-grids in developing regions, concluding that second-life
lithium-ion batteries may be price competitive with new lead-acid
batteries and deliver improved performance.

Fewer studies have considered the environmental or energetic
implications of second-life battery use. Ahmadi et al. [12] estimated
the potential CO2 emissions reduction of using repurposed vehicle
batteries to store off-peak electricity in Canada, thus avoiding
natural gas-fired peak generation. Faria et al. [13] conducted an
environmental assessment of second-life PEV battery use for peak
shaving and load shifting, based on grid characteristics of several
European countries. Both studies found that greenhouse gas (GHG)
emissions reduction from second-life use depends strongly on the
carbon-intensity of the electricity sources involved, but neither
explored the sensitivity of the results to highly uncertain system
parameters including battery degradation and capacity thresholds
of first- and second-life use.

PEV adoption and the availability of retired batteries will grow
alongside an evolving energy supply system, including increasing
amounts of renewable electricity sources. The intermittency of
these sources, such as solar and wind, requires energy storage for
maximum performance. In this study, we explore the extent to
which second-life use of retired PEV batteries can provide this
electricity storage role. We seek to address several research
questions in this analysis. First, we determine which factors most
significantly affect the net-energy balance of second-life battery
usage. Second, we quantify the potential contribution of second-
life batteries to California's energy storage needs through 2050.
Last, we quantify the net life-cycle GHG benefits from using
second-life batteries to support intermittent renewable electricity
sources.
2. Methods

2.1. Modeling framework

We develop and apply a parametric life cycle model to describe
the interrelated energy and material flows of the PEV battery sys-
tem. The model is driven by scenarios of future adoption of PEVs in
California, and the resulting stream of retired PEV batteries. We
focus on the potential for second-life usage of the retired batteries
and its net impact on energy use and greenhouse gas (GHG)
emissions, while assuming other life-cycle phases (battery manu-
facture, first life, and final recycling) remain unchanged. The system
boundaries of this study include all direct impacts of second-life
use such as battery transport, thermal management, and
charging. The boundaries also encompass components of the
broader energy system, including the displacement of fossil energy
production by enabling diurnal energy shifting of intermittent
renewable electricity production. The analytical framework is
shown schematically in Fig. 1. We assume that future electricity
output from renewable sources will exceed demand during peak
generation times, and electricity storage allows the use of this
electricity later in the diurnal cycle during peak demand times.

Based on modeled material and energy flows through the year
2050, we calculate and compare several metrics of second-life
system performance. These include the electricity delivered, the
energy balance, the GHG balance, and the energy stored on inves-
ted. The electricity delivered is simply the summation of the elec-
trical energy discharged from the second-life batteries, in units of
TWh. This can be expressed on an annual basis, or cumulative over
the study period (2015e2050).

The energy balance is a summation of major energy flows
throughout the system, and is defined by Equation (1):
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Energy Balance ¼ Edelivered � Echarging � Ecooling � Etransport (1)

where Edelivered is the electrical energy delivered by the batteries
during their second life, Echarging is the electrical energy used to
charge the batteries during their second life, Ecooling is the electrical
energy used for cooling of batteries during their second life, and
Etransport is the energy used to transport batteries to and from their
second-life applications. Equation (1) is based on the assumption
that, for the sites considered in this analysis, the thermal man-
agement systemmust only provide cooling. Yuksel &Michalek [14]
show that battery performance decreases at temperatures both
higher and lower than the optimum of 15e20 �C. Typical high
temperatures in most of California are more likely to be problem-
atic than lows, though the opposite is true for states with colder
climates such as Minnesota. We account for energy in units of TWh
of electrical energy, or its equivalent. We assume energy used for
battery transport is diesel fuel for trucks, thus we divide the TWh of
diesel used by a factor of 3, corresponding to an assumed conver-
sion efficiency of 33% from diesel fuel to equivalent electricity.
Energy balance can be calculated and expressed per year on an
annual basis, and can also be cumulated and expressed through the
year 2050.

The cumulative GHG balance is a summation of actual and
avoided GHG emissions to the atmosphere through 2050, and is
defined by Equation (2):

GHG Balance ¼ GHGcharging þ GHGcooling þ GHGtransport

� GHGavoided (2)

where GHGcharging is the cumulative GHG emissions from producing
electricity to charge the batteries during their second life, GHGcooling

is the cumulative GHG emissions from producing electricity to cool
the batteries during their second life, GHGtransport is the GHG
emissions from transporting the batteries to and from their second-
life applications, and GHGavoided is the cumulative GHG emissions
avoided by not generating fossil-based electricity during peak de-
mand times. We account for GHG emissions in units of million
metric tons of CO2 equivalent (Mt CO2e). The GHG balance can be
expressed on both annual and cumulative bases.

Energy stored on energy invested (ESOI) was introduced by
Barnhart& Benson [15] to compare the energy stored and delivered
by a device during its service life, to the energy needed to manu-
facture the device. Barnhart & Benson [15] defined ESOI with
Equation (3):

ESOIB&B ¼ C0 � l� h� D
C0 � ε

(3)

where C0 is the initial storage capacity of the battery, l is the
number of cycles in the battery's service life, h is the round-trip
chargeedischarge efficiency, D is the depth of discharge, and ε is
the cradle-to-gate embodied primary energy per unit of electrical
storage capacity. This definition is of limited use for battery second-
life analysis, as it does not explicitly consider battery degradation
during the service life, the numerator (“energy stored”) does not
distinguish between energy stored during first and second lives,
and the denominator (“energy invested”) includes only the energy
used at the beginning of the life cycle for material sourcing and
battery manufacturing. We note also that round-trip losses are
accounted for in the numerator as a reduction of the energy stored,
rather than in the denominator as a component of operational
energy investment.

Here we require a metric that distinguishes between energy
stored during first and second lives, as well as between energy
inputs during manufacturing, operation, reconfiguration, and end-
of-life stages. We adapt the ESOI metric by considering in the
numerator only the energy stored and delivered during the second
life, and in the denominator the direct transport and cooling energy
inputs needed to enable this second life. We define ESOI

0
with

Equation (4):

ESOI0 ¼ Edelivered
Ecooling þ Etransport

(4)

where Edelivered, Ecooling and Etransport are as defined in Equation (1).
Further seeking to refine the metric, we then define ESOI00 that also
includes round-trip efficiency losses in the denominator (Equation
(5)).

ESOI
00 ¼ Edelivered

Etransport þ Ecooling þ Eloss
(5)

where Eloss is defined in Equation (6):

Eloss ¼ Edelivered

�
1
h
� 1

�
(6)

where h is the round-trip chargeedischarge efficiency. The ESOI
00

metric (Equation (5)) considers the round-trip efficiency loss as
invested operational energy input, rather than as reduction of
delivered energy as in Barnhart & Benson's definition (Equation
(3)). We observe that a comprehensive full life-cycle ESOI metric for
batteries would include in the numerator all the electricity deliv-
ered during first- and second-life operation, and in the denomi-
nator all the energy used for material sourcing, manufacture,
operation, reconfiguration and disposal.

The system model consists of four elements: Battery supply,
battery degradation, battery second-life use, and battery logistics.
These are described in the following sections.
2.2. Battery supply

A crucial input for our analysis is the total quantity of batteries
made available for second-life applications each year, which is
largely determined by future PEV market adoption rates. Our sce-
narios are based on well-established fleet modeling equations. We
use a sigmoid adoption curve, documented by Scown et al. [16], to
represent the growing market share of PEVs (Equation (7)):

PðtÞ ¼ 1
1:41

�
1þ e�0:25tþ5

� (7)

where P(t) is the base-case PEV penetration (fraction) of total US
automobile sales, and t is the years elapsed since 2015. We consider
a base-case adoption rate, as well as low and high variations to
assess uncertainty. The base-case scenario reaches a 70% PEV share
of passenger car sales by 2050, while the low growth scenario
reaches approximately 60% and the high growth scenario reaches
approximately 80%. Baseline vehicle sales are provided by the US
Energy Information Administration [17], whichwe use to track each
vehicle in the fleet from sale to retirement, beginningwith cars sold
in the 1970s. California's total car sales are allocated to counties
based on population. The bases for our assumptions are docu-
mented in Scown et al. [16].

PEVs' share of sales growth in each county is modeled using
several factors. “Early adopter” urban counties including Los
Angeles, San Francisco, and Alameda, for example, are responsible
for the bulk of the early growth, which is consistent with pre-
liminary sales data. These urban areas tend to be the first to install
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PEV supporting infrastructure such as publicly available charging
stations. The remaining groups are categorized based on affluence,
quantified as median income (see Tables S1 and S2). As each new
adoption group enters the scenario, sales growth is allocated to
individual counties based on population. Results of these scenarios
by county for 2020, 2030, 2040 and 2050 are shown in Fig. S1.

We then translate PEV market adoption scenarios into battery
disposal estimates. We use logistic curves to represent the fraction
of batteries remaining after a given number of years beyond its
initial purchase date. In the base-case scenario, 75% of batteries last
10 years or longer. We also consider a short duration scenario
where only 60% of batteries last 10 years or longer, and a long
duration scenario where 90% of batteries last 10 years or longer.
Cars may, however, outlast their batteries, so we assume that new
batteries are purchased for cars that remain in use, but whose
batteries have reached their end-of-life. However, we assume that
cars within 2 years of their end-of-life will be retired early rather
than have a new battery installed. We estimate the fraction of ve-
hicles remaining on the road (FVR) using Equation (8) [18]:

FVRðaÞ ¼ 1
1þ e�0:28ð16:9�aÞ (8)

where a is the vehicle age in years.
High and low variations in battery supply for second-live use are

determined by combinations of PEV adoption rate scenarios and in-
vehicle battery duration scenarios that yield the highest and lowest
supply of retired batteries. Additional details of our adoption and
disposal scenarios are provided in the Supporting Information,
including assumptions about battery capacities (Figs. S3 and S4)
and the R script.
2.3. Battery degradation

It is broadly understood that battery performance degrades with
usage and time, but comprehensive and quantitative description of
such degradation remains elusive. More is known about early
stages of battery degradation, such as the growth of solid electro-
lyte interface [19]. Less is known about later stages of degradation
such as lithium plating, growth of dendrites, and structural failure
[20]. This makes the robust modeling of life-cycle battery perfor-
mance more challenging, as the literature lacks detailed quantita-
tive description of the latter stages of battery life.

It is generally recognized that a battery will experience an initial
capacity loss that decreases in rate, after which an inflection point
is reached and the battery suffers terminal degradation that in-
creases in rate [21]. In this analysis, we develop a simple model to
generically describe this pattern of life-cycle PEV battery degra-
dation based on 3 parameters: Phase 1 initial degradation rate,
Phase inflection point, and Phase 2 terminal degradation rate. The
energy storage capacity of the battery is tracked over time,
expressed as a percent of the capacity when the battery was new.
Phase 1 of the degradation profile is described mathematically by
Equation (9):

C1 ¼ 100� ð303� DxÞ (9)

where C1 is the energy storage capacity of the battery during Phase
1 (expressed as percent of original capacity), D is the ideal cumu-
lative energy discharged from the battery (disregarding capacity
loss), and X is an exponential factor with a base-case value of 0.55.
This equation is based onWang et al. [22], who considered the ideal
cumulative energy discharge (D) as the number of cycles multiplied
by the depth of dischargemultiplied by the full cell capacity (i.e. not
including the effects of capacity degradation). We recalculate the
cumulative energy discharge accounting for battery degradation,
and conduct our analysis based on cumulative energy delivered by
the battery, expressed in multiples of original storage capacity. The
capacity loss function corresponds to graphite-LiFePO4 cells with a
charge/discharge rate of 2C and a temperature of 60 �C (Equation
(7) from Reference [22]). We acknowledge that other Li-ion battery
chemistries and usage conditions will result in other degradation
patterns, though due to the paucity of robust literature data we
assume these uncertainties are accommodated within our param-
eter variations. We vary the Phase 1 degradation rate by changing
the value of the exponential factor X from its base-case value of
0.55, to a faster degradation value of 0.60 and a slower degradation
value of 0.50.

We model the inflection point between initial Phase 1 and ter-
minal Phase 2 degradation, specified as a percentage of original
energy storage capacity. In the absence of more compelling data,
we assume a base-case inflection point at 60% of original capacity,
with values of 80% and 40% corresponding to faster and slower
degradation. We then model the terminal Phase 2 degradation
based on exponential decay defined by Equation (10):

C2 ¼ P � 1:006ðE�YÞ (10)

where C2 is the energy storage capacity of the battery during Phase
2 (expressed as percent of original capacity), P is the location of the
inflection point between Phases 1 and 2 (in percent of original
capacity), and E is the cumulative energy delivered by the battery
during Phase 2 (in multiples of original full storage capacity), and Y
is a multiplier. We vary the Phase 2 degradation rate by changing
the value of the multiplier Y from its base case value of 1, to a faster
degradation value of 2 and slower degradation value of 0.5. Our
base-case degradation profile, as well as profiles representing var-
iations of each parameter, is shown in Fig. 2. The slight disconti-
nuity of some profiles is due to the different slopes of Equation (9)
and Equation (10) at the inflection point, and has no fundamental
effect on the analysis.

Within each defined battery degradation profile, we consider
various arrangements for first and second lives. Our base-case
condition assumes the first life (as a PEV battery) continues until
the energy storage capacity decreases to a threshold value of 70% of
its original value when the car was new. We then assume the
battery pack (or its disassembled cells) is placed into a stationary
second-life application, which continues until the storage capacity
declines to a final threshold, assumed to be 30% in our base case.
This is illustrated in Fig. 3 for the base-case conditions, where 53%
of total life-cycle electricity is delivered during the first-life and 47%
is delivered during the second-life. Fig. S2 shows corresponding
results for alternative values of battery degradation parameters. To
determine the significance of different threshold locations, we vary
the first-life threshold between 60% and 80%, and the second-life
threshold between 20% and 40%.

2.4. Battery second-life use

We consider the use of second-life PEV batteries to enable
diurnal energy shifting, allowing expanded use of intermittent
renewable energy sources such as wind and solar. We assume that
this daily storage and discharge of renewable electricity will sub-
stitute electricity generation fromnatural gas-fired power plants. In
a sensitivity analysis we consider the substitution of electricity
from coal-fired power plants. Although coal-fired electricity is
unlikely in California, the second-life batteries may, in principle, be
used in other locations where coal-fired power is more common.
Our base-case analysis assumes second-life batteries are used in
decentralized photovoltaic (PV) facilities, while we consider



Fig. 2. Modeled range of battery degradation profiles, each composed of an initial Phase 1 degradation, followed by a Phase inflection point and terminal Phase 2 degradation. Each
of these parameters is defined by a base case value, as well as by values describing faster or slower degradation.
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decentralized wind and centralized renewable generation in a
sensitivity analysis (see Section 2.5). GHG emission intensity factors
for electricity generation are based on median values from recent
life-cycle assessment (LCA) harmonized meta-analyses. For wind
electricity, 15 gCO2e are emitted per kWh, based on Dolan & Heath
[23]. For PV electricity, 27 gCO2e are emitted per kWh, based on
average emission factors for crystalline silicon PV [24] and thin-film
PV [25]. Emission factors for natural gas-fired electricity are 510
gCO2e per kWh based on O'Donoughue et al. [26], while those for
coal-fired electricity are 980 gCO2e per kWh based on Whitaker
et al. [27]; both are average values for a range of energy conversion
technologies. We assume the use of an integrated battery man-
agement system, to avoid capacity imbalance when cells of
different degradation levels are assembled together [28,29].

We consider the direct energy use and GHG emissions from
activities needed to enable second-life applications, including
Fig. 3. Relation between first life and second life of batteries, as determined by the
degradation profile and by the end-of-life thresholds of first and second lives (base-
case is shown here).
battery cooling. Cooling of batteries during use is important to
avoid premature degradation and temporary efficiency losses,
particularly in California and other warm climates. A recent study
shows that an ambient temperature of 32 �C can reduce a Nissan
Leaf battery pack's round-trip charge/discharge efficiency by
greater than 20% relative to optimal conditions (15e20 �C), and an
ambient temperature of 38 �C can reduce efficiency by more than
30% [14]. We quantified the waste heat to be removed based on the
round trip efficiency of the batteries, and the cooling energy inputs
based on the coefficient of performance (COP) of the cooling sys-
tem. This is described by Equation (11):

Ecooling ¼ Edelivered �
1� h

COP
(11)

where Ecooling is the electrical energy needed for battery cooling,
Edelivered is the electricity delivered by the batteries, h is the round-
trip charge/discharge efficiency of the batteries, and COP is the
coefficient of performance of the cooling system (ratio of heat
removed to electrical energy input). Our base-case analysis as-
sumes a round-trip efficiency of 80% for the second-life batteries,
and a COP of 4. In a sensitivity analysis, we consider a round-trip
efficiency range of 70%e90%, and a COP range of 2e6.
2.5. Battery logistics

We conduct geographic information system (GIS) modeling to
estimate the energy use and GHG emissions associated with the
supply chain of the PEV batteries during their second life stage. We
use geospatial optimization methods to identify the effects of
supply chain logistics, integrating energy and environmental met-
rics [30]. A location-allocation analysis is used to determine the
optimal facility locations, where the objective function minimizes
the total weighted distance (ton-km) that the batteries must travel
from their initial collection points to their second life locations and
finally to the recycling facility. For modeling the supply chain lo-
gistics, the weighted distance is the appropriate function to
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minimize, as the environmental impacts are linearly related to the
total distance traveled.

We model three alternative logistics scenarios for battery
second-life use: decentralized solar, decentralized wind, and
centralized wind/solar. The centralized scenario assumes that all
batteries are used in a single large facility in Kern County, where the
average solar and wind intensities are both greatest in California.
The decentralized solar and wind scenarios assume that second-life
batteries are distributed to different counties in proportion to each
county's solar and wind (respectively) resources above a minimum
threshold of viability. These three scenarios cover a range of po-
tential battery distribution alternatives that may occur through
2050.

To quantify the impacts of transportation between battery
collection points, dismantling facilities, second life locations, and
recycling facilities, we assume batteries are transported via diesel
truck. We create a network dataset in an ArcGIS software envi-
ronment to calculate the transportation distances, using data on
California's highway network and county borders sourced from the
US Department of Commerce and the US Census Bureau [31]. Solar
and wind intensity data are sourced from the US National Renew-
able Energy Laboratory [32]. Geographically-explicit car dealership
locations are taken from Data Lists [33].

We assume battery packs are collected at local car dealerships,
as these locations are currently used for battery testing and take-
back [34]. The mass of batteries collected at each dealership is
calculated based on the projected number, mass, and capacity of
batteries disposed per county in 2050 (see Section 2.2). The
transportation between consumers' homes and collection points is
typically not accounted for in the literature, and is excluded from
this model [35]. From the initial collection points, the batteries are
transported to dismantling facilities for processing, where 10% of
the battery mass is assumed to be diverted to traditional recycling
[36]. The batteries are then transported to the location of their
second-life applications, and at the end of their second life they are
sent to a centralized battery recycling facility. For the facility loca-
tion optimization, all California county centroids are considered as
candidate locations [37]. GIS modeling provides the optimal facility
locations for each logistics scenarios, and transportation energy use
and GHG emissions are calculated. Fig. S3 shows the corresponding
optimal facility locations for each scenario.

3. Results and discussion

Modeled results for PEV battery disposal in California through
2050, based on scenario projections of PEV adoption and first-life
duration, are shown in Fig. 4. Under base-case conditions, about
Fig. 4. Projected supply of disposed PEV batteries in California. Left figure shows tons of batte
disposed each year.
60,000 metric tons of batteries per year are anticipated for 2050,
ranging from 30,000 to 90,000 tons per year in the low and high
scenarios. This battery supply represents about 15,000 MWh of
original (at the time of purchase) energy storage capacity, ranging
from 8000 to 25,000 MWh.

The energy use and GHG emissions of transporting batteries to
and from their locations of second-life use are found to be relatively
minor, based on results from the GIS analysis of supply-chain lo-
gistics. This includes collection of the batteries from dealerships,
distribution of batteries to the second-life sites, and final transport
from the second-life sites to a recycling facility. The centralized
renewable scenario requires the least energy use (880 MJ of diesel
fuel) and emits the least GHG (65.5 kg CO2e), per ton of battery used
in second-life applications. The decentralized wind scenario is
medium intensity (1060 MJ ton�1, and 78.8 kg CO2e ton�1). The
decentralized solar scenario is most energy intensive
(1240 MJ ton�1) and GHG intensive (92.6 kg CO2e ton�1), and we
use this as our base-case logistics scenario. Details on energy and
GHG intensities of the 3 second-life logistics scenarios are listed in
Table S5.

The energy balance under base-case conditions is shown in
Fig. 5. In 2050, about 15 TWh of electricity are projected to be
delivered by second-life PEV batteries. This will require about
18 TWh of renewable intermittent electricity for charging, taking
into account the assumed round-trip efficiency of 80%. Cooling of
the second-life batteries in use requires about 1 TWh of electricity.
Energy use for transport of batteries to and from their locations of
second-life use is comparatively minor.

The GHG balance under base-case conditions is shown in Fig. 6.
In 2050, charging the second-life batteries will emit about 0.5 Mt
CO2e per year, due to life-cycle emissions from intermittent PV
electricity generation. Discharging this electricity later during the
diurnal cycle, to replace natural gas-fired electricity generation, will
avoid about 7.5 Mt CO2e per year. Battery transport and cooling are
projected to cause relatively minor GHG emissions.

Fig. 7 shows the sensitivity to parameter variations of 3 per-
formance metrics: cumulative electricity delivered, cumulative
energy balance, and cumulative GHG reduction. The central axis of
each figure shows the base case value of the metric, and each bar
shows the effect of each individual parameter shifting to its low-
performance value (left bars) and high-performance value (right
bars). The metrics are all sensitive to the battery supply scenario,
which directly affects the scale of second-life potential, and de-
pends heavily on PEV adoption rates. These metrics are also sen-
sitive to the battery degradation inflection point, when the
batteries change from initial Phase 1 degradation to terminal Phase
2 degradation. The cumulative GHG reduction is sensitive to the
ries disposed per year; right figure shows MWh of original storage capacity of batteries



Fig. 5. Energy balance of modeled second-life battery use in California. Second-life batteries have the potential to deliver about 15 TWh of electricity per year in 2050.

Fig. 6. GHG balance of modeled second-life battery use in California, assuming battery charging with distributed solar PV electricity, and battery discharging to displace natural gas-
fired electricity generation. Potential net emissions reduction of about 7 Mt CO2e per year is projected for 2050.
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source of substituted electricity. If coal-fired electricity is displaced
by the renewable intermittent electricity supported by second-life
batteries (instead of base-case natural gas-fired electricity), the
cumulative GHG emission reduction is doubled. This suggests that
the overall climate benefits of second-life use of California's retired
PEV batteries may be greater if the second-life application is
outside of California, where coal-fired electricity is more common.

The ESOI performance of second-life systems is primarily
affected by round-trip efficiency and cooling system COP. For base-
case conditions, the ESOI0 metric of second-life battery use is 20.
The broader ESOI00 metric, including energy investment for battery
transportation and cooling as well as round-trip losses, is 4 under
base-case conditions. The sensitivity of these performance metrics
to parameter variations is shown in Fig. 8. The ESOIB&B (see Equa-
tion (3)) of new lithium-ion batteries was estimated by Barnhart &
Benson [15] at about 10, comparing the first-life electricity output
to the primary energy investments for raw material supply and
battery manufacture. The ESOI values calculated by Barnhart &
Benson [15] are not to be directly compared with the ESOI metrics
calculated here, as they measure fundamentally different phe-
nomena. We present them here to encourage discussion on
appropriate performance metrics for large-scale energy storage
systems.

4. Conclusions

This exploratory analysis suggests that second-life use of retired
PEV batteries may play a modest, though not insignificant, role in
California's future energy system. The electricity delivered under
base-case modeling conditions, 15 TWh per year in 2050 (Fig. 5 and
Table S6), is roughly 5% of the current total electricity use in Cali-
fornia of about 300 TWh per year. The total anticipated electricity
use in California in 2050 remains about 300 TWh per year, based on
Scenario 2 of Greenblatt [38] which considers the effects of
committed and uncommitted energy and climate policies through
2050. Electricity production from onshore wind, distributed PV,
and centralized PV is anticipated to increase from current low
values to about 100 TWh per year by 2050. The second-life battery
use analyzed here is projected to support and enable part of this
increased production, by storing electricity produced during peak
generation periods and delivering it later during peak demand
periods.

Under base-case modeling conditions, second-life battery use in
California has the potential to reduce GHG emissions by about 7 Mt
CO2e per year in 2050 (Fig. 6 and Table S6). This is roughly 1.5% of
current total California GHG emissions of 460 Mt CO2e per year. It is
about 4% of the anticipated total emission reduction from 2010 to
2050 of 150 Mt CO2e per year (based on Scenario 2 of Greenblatt
[38]). Emissions from producing electricity used in California are
currently about 100 Mt CO2e per year, and are anticipated to be
about half that amount in 2050. The 7Mt CO2e per year avoided due
to projected second-life battery use would comprise about 14% of
that reduction in the electricity sector.

The magnitude of energy and climate benefits of second-life
battery use is directly proportional to the number of retired
vehicle batteries available, which depends strongly on the future
adoption rate of PEVs in California. The PEV adoption rate, bounded
by the slow and fast rates shown in Fig. 4, thus becomes a key
uncertainty surrounding future benefits of second-life battery use
in California. The capacity threshold for retirement of batteries



Fig. 7. Change in 3 metrics (cumulative, 2015e2050) due to variation of individual parameters between low and high values. From top to bottom: cumulative second-life electrical
energy delivered; cumulative electrical energy balance; cumulative GHG emission reduction. For each metric, the six most significant parameters are shown.
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from PEVs is also identified as an important variable. In our analysis
the base-case threshold between first and second lives is 70% of
original capacity, and moving this threshold to 60% or 80% is found
to have a significant impact on second-life performance. PEV bat-
teries are typically considered to be still useful in vehicles until they
degrade to about 70% of their original capacity, though there has
been little rational analysis to support this retirement threshold.
Recent work suggests that PEV functionality remains high, even as
the battery capacity drops below the commonly accepted threshold
of 70% capacity. Saxena et al. [39] found that a large fraction of the
mobility needs of US drivers continue to be satisfied with PEV
batteries with less than 70% remaining capacity. This suggests that
future rationalization of the retirement threshold may lengthen
first lives of PEV batteries, and correspondingly shorten their
second-life potential.

For any given amount of batteries produced, the degradation
profile determines how much electricity can be stored and deliv-
ered by the batteries during their life spans. Acknowledging the
complexity of physical and chemical factors determining battery
degradation, here we simply characterize the degradation based on
three parameters: Phase 1 initial degradation rate, Phase inflection
point between Phases 1 and 2, and Phase 2 terminal degradation
rate. We find that the inflection point location has the greatest
influence on second-life battery performance. Our base-case as-
sumes that Phase 1 degradation continues until the battery reaches
60% of its original storage capacity, when terminal Phase 2 degra-
dation begins. Delaying this inflection to 40% of original capacity
significantly increases second-life opportunities, while early in-
flection at 80% of original capacity substantially decreases them.
The rate of Phase 1 degradation has moderate impact on second-
life, while the rate of Phase 2 degradation has very little impact.
These results suggest that designing and building batteries such
that terminal degradation is delayed or avoided, will enable much
greater opportunities for second-life benefits.

The uncertainties of this analysis are substantial, due to the
limited quantitative data available on performance of batteries



Fig. 8. Change in ESOI metrics due to variation of individual parameters between low and high values. Top figure shows ESOI
0
including operational energy investments for battery

transport and cooling. Bottom figure shows ESOI
00
also including round-trip chargeedischarge losses as operational energy investment. For each metric, the four most significant

parameters are shown.
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during their full life-cycle. Much more is known about battery
performance during their earlier stages of use and degradation,
while comparatively little detail is available to inform robust
modeling of later stages of battery use and degradation. We
accommodate this uncertainty by conducting a comprehensive
sensitivity analysis of model parameters, to determine which
system-wide factors are most critical for successful second-life
battery use. We find that several parameters are particularly sig-
nificant: PEV adoption rates, inflection point between initial and
terminal degradation, threshold between first- and second-life
applications, round-trip charge/discharge efficiency, and the
source of electricity generation that is offset by enabled renewable
generation. Future work should focus on understanding and opti-
mizing these factors, to allow second-life PEV batteries to play a
beneficial role in California's energy future.
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